Properties of Functions

Domain and Range

The set of all the starting points is called "the domain" and the set of all the ending points is called "the range." The domain is what you start with; the range is what you end up with. The domain is the x's; the range is the y's.

- State the domain and range of the following relation. Is the relation a function? $\{(2, -3), (4, 6), (3, -1), (6, 6), (2, 3)\}$
 - \circ domain: {2, 3, 4, 6}
 - o range: {−3, −1, 3, 6}
 - Since x = 2 gives me two possible destinations (2,-3) and (2,3) then this relation is <u>not</u> a function.
- State the domain and range of the following relation. Is the relation a function? $\{(-3, 5), (-2, 5), (-1, 5), (0, 5), (1, 5), (2, 5)\}$

I'll just list the x-values for the domain and the y-values for the range:

```
domain: \{-3, -2, -1, 0, 1, 2\}
```

range: {5}

domain	range	
$\begin{array}{c} -3 \\ -2 \\ -1 \\ 0 \\ 1 \end{array}$	-6 -1 0 3 15	This is a function. You can tell by tracing from each x to each y . There is only one y for each x ; there is only one arrow coming from each x .
domain	range	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} -3\\ -2\\ -1\\ 0\\ 1 \end{array} $	-6	Ha! Bet I fooled some of you on this one! This is a function! There is only one arrow coming from each x ; there is only one y for each x . It just so happens that it's always the same y for each x , but it is only that one y . So this is a function; it's just an extremely <i>boring</i> function!

domain	range	
$ \begin{array}{c} -3 \\ -2 \\ -1 \\ 0 \\ 1 \end{array} $	-6 -1 0 3 -1 -1 -1 -1 -1 -1 -1 -1	This one is not a function: there are <i>two</i> arrows coming from the number 1 ; the number 1 is associated with two <i>different</i> range elements. This is not a function!

The "Vertical Line Test"

Looking at this function stuff graphically, what if we had the relation that consists of a set containing just two points: $\{(2, 3), (2, -2)\}$? We already know that this is <u>not a function</u>, since x = 2 has two corresponding has two corresponding *y* values.

If we graph this relation, it looks like:	
Notice that you can draw a vertical line through the two points, like this:	

If you can draw a vertical line that crosses the graph in more than one place, then the relation is not a function. Here are a couple examples:

This graph shows a function, because there is no vertical line that will cross this graph twice.
This graph does not show a function, because any number of vertical lines will intersect this oval twice. For instance, the <i>y</i> -axis intersects (crosses) the line twice.

For each of the following cases, state whether the information describes a function. If so, state the domain and range.

domain $ \begin{array}{c} -3 \\ -2 \\ -1 \\ \end{array} $	range -6 -1 0	
	3	Function:
Function:		Domain:
Domain:		Range:
Range:	range	
-3 -2 -1 0 1	4	Function: Domain: Range:
Function: Domain: Range:		
domain -3 -2 -1 0 1	range -6 -1 0 3 15	Function:
Function:		Domain:
Domain:		Range:
Range:		

Relation, Function, Domain & Range Part I 1) What is the domain and range of the following relation? $\{(-1,2), (2, 51), (1, 3), (8, 22), (9, 51)\}$ domain: range: 2) What is the domain and range of the following relation? $\{(-5,6), (21, -51), (11, 93), (81, 202), (19, 51)\}$ domain:_____ range: 3) What is the domain and range of the following symbolic relation? $\{(\mathfrak{X}, \mathscr{A}), (\mathfrak{A}, \mathfrak{A}), (\mathfrak{A}, \mathfrak{A})), (\mathfrak{A}, \mathfrak{A}), (\mathfrak{A}, \mathfrak{A}), (\mathfrak{A}, \mathfrak{A}), (\mathfrak{A}, \mathfrak{A}), (\mathfrak{A}, \mathfrak{A})), (\mathfrak{A}, \mathfrak{A}), (\mathfrak{A}, \mathfrak{A})), (\mathfrak{A}, \mathfrak{A}), (\mathfrak{A}, \mathfrak{A})), (\mathfrak{A}, \mathfrak{A}), (\mathfrak{A}, \mathfrak{A})), (\mathfrak{A}, \mathfrak{A}))$ domain: range: Part II Which relations below are functions? 1) Relation #1 { (-1,2), (-4,51), (1,2), (8,-51) } Relation $\#2 \{ (13,14), (13,5), (16,7), (18,13) \}$ Relation #3 { (3,90), (4,54), (6,71), (8,90) } 2) Which relations below are functions? Why? Relation #1 { (3,4), (4,5), (6,7), (8,9) } Relation #2 { (3,4), (4,5), (6,7), (3,9) } Relation #3 { (-3,4), (4,-5), (0,0), (8,9) } Relation #4 { (8, 11), (34,5), (6,17), (8,19) } 3) Which relations below are functions? Why? Relation #1 { (3,4), (4,5), (6,7), (3,-9) } Relation #2 { (3,4), (4,5), (6,7), (5,4) } Relation #3 { (0,4), (4,-5), (0,0), (8,9) } Relation #4 { (8, 11), (34,5), (6,17), (6,19) } 4) For the following relation to be a function, X cannot be what values? $\{(8, 11), (34,5), (6,17), (X, 22)\}$

5) For the following relation to be a function, X cannot be what values? $\{(12, 13), (-11, 22), (33, 101), (X, 22)\}$

6) For the following relation to be a function, X can not be what values? $\{(12,14), (13,5), (-2,7), (X,13)\}$

7) For the following relation to be a function, X can not be what values? $\{(13,14), (12,5), (16,7), (X,13)\}$

Alex states that the relation below is not a function. Lillian says that it is a function. Who is correct? Explain your reasoning.

Relation { (13,14), (12,5), (16,7), (13, 14), (-2, 33), (13, 14 }

Explanation:

TEACHERS: Feel free to make copies of this worksheet for the sole purpose of use in your own classroom. ENJOY!!!

RELATIONS AND FUNCTIONS 2

A RELATION	is a correspondence between two variables.is a set of points.
A FUNCTION	- is a relation such that for each x-value in the Domain , there is exactly 1 corresponding y-value in the Range .

Vertical Line Test for a Function

A vertical line can intersect the graph of a function in <u>at most one point</u>, or using an alternate form, If any vertical line intersects the graph <u>at more than one point</u>, then the graph is NOT the graph of a function.

Unit 2: Worksheet 2 Domain and Range

Name	
------	--

Period

In 1 – 7, give the domain and rang	ge for each of the follow	wing, then determine whether it's a function.
1.	2.	$\{(9, 0), (0, 9), (4, 5), (5, 4)\}$
x y Domain:		Domain:
-3 -8 Range:		Range:
<u>-1</u> -14 Function?		Function?
3. y Ordered Pairs:	4.	y y x Ordered Pairs:
Domain:		Domain:
Range:		Range:
Function?		Function?
5. Y X	6. Y	7. y x x x y x y x y x
Domain:	Domain:	Domain:
Range:	Range:	Range:
Function?	Function?	Function?

OBJECTIVE 1-a: To determine whether or not a relation is a function.

ALGEBRA WITH PIZZAZZ! © Creative Publications 175

www.turuer u.m.com worksheet

-

- -

ALGEBRA	Na	ame:		
Relations and Functions		Period:		
s each relation a function?	Use a mapping diagram	1. Explain your answer.		
1. {(4, 7), (9, 11), (4, 6),	(10, 2)})} 2. $\{(-5, -8), (2, 4), (3, 4), (-6, -8)\}$		
	κ.			
Is it a function?		Is it a function?		
Explain:		Explain:		
Identify which of the follow	ving graphs are NOT fu	inctions.		
Answer(s):	(there	e may be more than one!)		
	[D]	[6]	DI	
3. [A]	[B]	رد] ۲۸	×,	
to /	tó			
		¥		
Is each relation a function	? Use the vertical line t	est. Explain your answer.		
4. {(2, 5), (-3, 5), (0, 5), (3, 5)}	5. {(-1, -9), (1, 3), (-1, 9),	(6, 6)}	

.