Droperties of Functions

Domain and Range

The set of all the starting points is called "the domain" and the set of all the ending points is called "the range." The domain is what you start with; the range is what you end up with. The domain is the x 's; the range is the $y^{\prime} s$.

- State the domain and range of the following relation. Is the relation a function?

$$
\{(2,-3),(4,6),(3,-1),(6,6),(2,3)\}
$$

- domain: $\{2,3,4,6\}$
- range: $\{-3,-1,3,6\}$
- Since $x=2$ gives me two possible destinations $(2,-3)$ and $(2,3)$ then this relation is not a function.
- State the domain and range of the following relation. Is the relation a function? $\{(-3,5),(-2,5),(-1,5),(0,5),(1,5),(2,5)\}$

I'll just list the x-values for the domain and the y-values for the range:
domain: $\{-3,-2,-1,0,1,2\}$
range: $\{5\}$

| lomain | each y. There is only one y for each x; there is only one
 arrow coming from each x. |
| :--- | :--- | :--- |

| domain | range |
| :--- | :--- | :--- |
| | |

The "Vertical Line Test"

Looking at this function stuff graphically, what if we had the relation that consists of a set containing just two points: $\{(2,3),(2,-2)\}$? We already know that this is not a function, since $x=2$ has two corresponding has two corresponding y values.
If we graph this relation, it looks like:

If you can draw a vertical line that crosses the graph in more than one place, then the relation is not a function. Here are a couple examples:

For each of the following cases, state whether the information describes a function. If so, state the domain and range.
domain range

Function: \qquad
Domain: \qquad
Range: \qquad
domain
range

Function: \qquad

Domain: \qquad
Range: \qquad
domain range

Function: \qquad

Domain: \qquad

Range: \qquad

Relation, Function, Domain \& Range

Part I

1) What is the domain and range of the following relation?
$\{(-1,2),(2,51),(1,3),(8,22),(9,51)\}$

domain:

\qquad range: \qquad
2) What is the domain and range of the following relation?

$$
\{(-5,6),(21,-51),(11,93),(81,202),(19,51)\}
$$

domain: \qquad
range: \qquad
3) What is the domain and range of the following symbolic relation?

 domain: range:
 \qquad

Part II

1) Which relations below are functions?

$$
\begin{aligned}
& \text { Relation \#1 }\{(-1,2),(-4,51),(1,2),(8,-51)\} \\
& \text { Relation \#2 }\{(13,14),(13,5),(16,7),(18,13)\} \\
& \text { Relation \#3 }\{(3,90),(4,54),(6,71),(8,90)\}
\end{aligned}
$$

2) Which relations below are functions?

Why?
Relation \#1 $\{(3,4),(4,5),(6,7),(8,9)\}$
Relation \#2 \{ $(3,4),(4,5),(6,7),(3,9)\}$
Relation \#3 $\{(-3,4),(4,-5),(0,0),(8,9)\}$
Relation \#4 $\{(8,11),(34,5),(6,17),(8,19)\}$
3) Which relations below are functions?

Why?
Relation \#1 $\{(3,4),(4,5),(6,7),(3,-9)\}$
Relation \#2 $\{(3,4),(4,5),(6,7),(5,4)\}$
Relation \#3 \{ $(0,4),(4,-5),(0,0),(8,9)\}$
Relation \#4 $\{(8,11),(34,5),(6,17),(6,19)\}$
4) For the following relation to be a function, \mathbf{X} cannot be what values?

$$
\{(8,11),(34,5),(6,17),(\mathbf{X}, 22)\}
$$

5) For the following relation to be a function, \mathbf{X} cannot be what values?

$$
\{(12,13),(-11,22),(33,101),(\mathbf{X}, 22)\}
$$

6) For the following relation to be a function, \mathbf{X} can not be what values?

$$
\{(12,14),(13,5),(-2,7),(\mathbf{X}, 13)\}
$$

7) For the following relation to be a function, \mathbf{X} can not be what values? $\{(13,14),(12,5),(16,7),(\mathbf{X}, 13)\}$

Alex states that the relation below is not a function. Lillian says that it is a function. Who is correct? Explain your reasoning.

Relation $\{(13,14),(12,5),(16,7),(13,14),(-2,33),(13,14\}$

Explanation:

\qquad
\qquad
\qquad

TEACHERS: Feel free to make copies of this worksheet for the sole purpose of use in your own classroom. ENJOY!!!

RELATIONS AND FUNCTIONS 2

A RELATION	- is a correspondence between two variables. - is a set of points.
A FUNCTION \quad- is a relation such that for each \mathbf{x}-value in the Domain, there is exactly 1 corresponding y-value in the Range.	

Vertical Line Test for a Function

A vertical line can intersect the graph of a function in at most one point, or using an alternate form,
If any vertical line intersects the graph at more than one point, then the graph is NOT the graph of a function.

Function?
Domain:
Range:

Line Segment
Function?
Domain:
Range:

$y=2 x-3$
Function?
Domain:
Range:

$$
y=(x-2)^{2}-5
$$

Function?
Domain:
Range:

$x=-(y-2)^{2}+1$
Function?
Domain:
Range:

$y=-|x-3|+2$
Function?
Domain:
Range:

Unit 2: Worksheet 2
Domain and Range

Name
Period
\qquad

What Did the Baby Porcupine Say When It Backed Into a Cactus?

Determine which of the relations below are functions. Find the number of each relation that is a function at the bottom of the page and cross out the letter below it. When you finish, the answer to the title question will remain.
(1) $\{(-2,7),(-1,5),(0,3),(1,1),(2,1)\}$
(2) $\{(-7,20),(3,5),(0,5),(-2,0),(6,-4),(-6,-9),(4,4)\}$
(3) $\{(4,8),(-3,-2),(9,6),(2,-1),(-4,-5),(2,7),(-8,0)\}$

(4) | x | y |
| :---: | :---: |
| 0 | -19 |
| 1 | -12 |
| 2 | -4 |
| 3 | 3 |
| 4 | 13 |
| 5 | 27 |

(5) | x | y |
| :---: | :---: |
| -5 | 8 |
| -3 | 8 |
| -1 | -2 |
| 1 | -2 |
| 3 | 11 |
| 5 | 23 |

(12)

x	y
-2	-7
-2	5
0	-16
2	0
2	6

ALGEBRA

Relations and Functions

Name: \qquad
Period: \qquad

$$
\text { 1. }\{(4,7),(9,11),(4,6),(10,2)\}
$$

$$
\text { 2. }\{(-5,-8),(2,4),(3,4),(-6,-8)\}
$$

\qquad Is it a function? \qquad

Explain:

Identify which of the following graphs are NOT functions.
Answer(s): \qquad . (there may be more than one!)
3. $[\mathrm{A}]$
[B]
[C]
[D]

Is each relation a function? Use the vertical line test. Explain your answer.
4. $\{(2,5),(-3,5),(0,5),(3,5)\}$
5. $\{(-1,-9),(1,3),(-\mathrm{I}, 9),(6,6)\}$

