Lesson 4.7: Congruent	Honors Geometry
Triangles Proofs Worksheet	Mr. Ferwerda

Name:_____

In problems 1-9, write complete proofs.

1.	Given: $FH \cong FT$ $SH \cong ST$	Conclusions	Justifications
	Prove: $\angle H \cong \angle I$ $H \longrightarrow I$ S		
2.	Given: $SH \cong PE$ $\angle S \cong \angle P$	Conclusions	Justifications
	Prove: $\overline{SA} \cong \overline{PA}$		
S	E P		
3.	Given: $\angle 1 \cong \angle 3$ $\angle 2 \cong \angle 4$	Conclusions	Justifications
	Prove: $\overline{QU} \cong \overline{AD}$		
ل م	Q 1 2 4 3 A	υ	

9. Prove the *Isosceles Triangle Converse Theorem*:

"If a triangle has two congruent angles, then it is an isosceles triangle."

Given: ΔABC $\angle 1 \cong \angle 2$

Prove: $\overline{AB} \cong \overline{AC}$

1.

Construct $\overline{AQ} \perp \overline{BC}$

Conclusions	Justifications	
0. $\triangle ABC$; $\angle 1 \cong \angle 2$	0. Given	

1. Through a point not on a line, there is exactly one line perpendicular to the given line