Answers

1) $3 x^{2} \sqrt{2}$
2) $16 \sqrt{2 n}$
3) $-15 v^{2} u \sqrt{6 u}$
4) $24 y \sqrt{7 x}$
5) $3 \sqrt{10}$
6) $-15 \sqrt{10}$
7) $30 \sqrt{3}$
8) -150
9) $-10 x^{2}$
10) $20 r^{2} \sqrt{2 r}$
11) $-12 b \sqrt{2}-4 \sqrt{15 b}$
12) $\sqrt{30 k}+\sqrt{6 k}$
13) $24 n \sqrt{15}+30 n \sqrt{3}$
14) $80 \sqrt{2 k}-4 \sqrt{10 k}$
15) $-10-25 \sqrt{5 x}+10 \sqrt{5}+125 \sqrt{x}$
16) $36 \sqrt{x}+6 \sqrt{15}-12 \sqrt{15 x}-30$
17) $\frac{\sqrt{2}}{2}$
18) $\frac{\sqrt{3}}{3}$
19) $\frac{2 \sqrt{5}-5 \sqrt{2}}{20}$
20) $2 \sqrt{2}+\sqrt{6}$
21) $\frac{-20+5 \sqrt{5}}{11}$
22) $15+10 \sqrt{2}$
23) $\frac{5+5 x^{2} \sqrt{3}}{3-9 x^{4}}$
24) $\frac{-4+4 \sqrt{3 k}}{5 k-15 k^{2}}$
25) $2 \sqrt{2}-2 \sqrt{6}$
26) $-7 \sqrt{6}$
27) $-8 \sqrt{2}$
28) $-2 \sqrt{5}-2 \sqrt{2}$

The two binomials are $x-2$ and $3 x-4$.
$(2 x+5)(x-3)$

The factors are $x-5$ and $x+2$
a) $\quad 4 x y^{3}\left(3 y-16 x^{2}+10 x y^{4}\right)$
b) $\quad 4(x+10)(x-3)$
c) $\quad\left(5 b-6 a^{2}\right)\left(5 b+6 a^{2}\right)$
d) $(y+6)(x-z)$

35
a) $(y-1)(y+1)$
b) $\quad(x-3)(x+3)$
c) $\quad(4-5 x)(4+5 x)$
d) $x y z(1-x)(1+x)$
e) $\quad(y+a)(x-3)(x+3)$
f) $(a+b-4)(a+b+4)$
g) $(2 x+2 y) 4 x$

36
a) $\quad 2(9 x+10)$
b) $4(3 x+y)$
c) $4 x(5 y+4)$
d) $\quad m^{6}\left(m^{2}+1\right)$
e) $\quad 2\left(3 x^{2}-x+2\right)$
f) $\quad a(a-b-1)$
g) $\quad 7 x y^{2}\left(x^{4}+3 x y+2 y^{2}\right)$
h) $\quad(m+n)(x+y)$
i) $\quad(a+b)(c-1)$
j) $\quad 2(3 x-2)\left(3 x^{2}+x-2\right)$

37 D
$38 \quad C$

39 D

40 B

B

42 D

43 B

C
a) $\quad\{0,1\}$
b) $\left\{-\frac{1}{3}, \frac{2}{5}\right\}$
c) $\left\{-\frac{4}{3}, 2\right\}$
d) $\left\{-\frac{3}{2}, 1\right\}$
a) $f(0)=2$
b) $f(3)=-7$
c) $f(5)=17$

When Charles threw the ball, his hand was 7.2 m from the wall.

C

49 D

50 C

51 D

52
B

53
B

C

C

Equation of the parabola
According to the table of values, the coordinates of the vertex of the parabola are $S(29,150)$.

$$
\begin{aligned}
y & =a(x-h)^{2}+k \\
y & =a(x-29)^{2}+150 \\
54 & =a(9-29)^{2}+150 \\
-96 & =400 a \\
-0.24 & =a
\end{aligned}
$$

The equation of the parabola is $y=-0.24(x-29)^{2}+150$.
Launching point
If $y=0$, then $0=-0,24(x-29)^{2}+150 \quad$ Hence, $x=4$ and $x=54$
Since the launching point is to the left of the vertex of the parabola, the coordinates of the launching point are $x=4$ and $y=0$.

Position of the rocket when it exploded
If $y=96$, then $96=-0.24(x-29)^{2}+150$ Hence, $x=14$ or $x=44$
Since the position of the rocket when it exploded is the right of the vertex of the parabola, the coordinates of the position of the rocket when it exploded are $x=44$ and $y=96$.

Position of the fountain
Since the rocket exploded 96 m above the fountain, the coordinates of the position of the fountain are $x=44$ and $y=0$.

Distance between the launching point and the fountain
$44-4=40 \mathrm{~m}$

Answer The distance between the point from which the rocket was launched and the fountain is 40 m .

Rule of the function

x : time in minutes
$f(x)=$ altitude in metres
$f(x)=a(x-h)^{2}+k$
$f(x)=a(x-3)^{2}+10$
$f(8)=0$ then $0=a(8-3)^{2}+10$

$$
0=a(25)+10
$$

$$
\frac{-10}{25}=\mathrm{a}
$$

$$
-0.4=a
$$

$f(x)=-0.4(x-3)^{2}+10$
y-intercept

$$
f(0)=-0.4(0-3)^{2}+10=6.4
$$

Answer The balcony is located 6.4 m off the ground.

Coordinates of point B
The axis of symmetry of the parabola representing f is $x=3$.
Since the coordinates of A are $A(0,0)$, the coordinates of B are $B(6,0)$.
Rule of g
Since the zeros of function g are 6 and 10 , the equation of the axis of symmetry of the parabola representing g is $x=8$.

The coordinates of the vertex are $\mathrm{h}=8$ and $\mathrm{k}=4$.

$$
\begin{aligned}
g(x) & =a(x-8)^{2}+4 \\
0 & =a(6-8)^{2}+4 \\
0 & =4 a+4 \\
-4 & =4 a \\
-1 & =a \\
g(x) & =-1(x-8)^{2}+4
\end{aligned}
$$

Answer: \quad The rule of the function g is $g(x)=-(x-8)^{2}+4$.
x-coordinate of the location of the basket
y-coordinate of the location of the basket: 3

$$
\begin{aligned}
& -0.2(x-5)^{2}+3.45=3 \\
& -0.2(x-5)^{2}=-0.45 \\
& (x-5)^{2}=2.25 \\
& x-5=-1.5 \quad \text { or } \quad x-5=1.5 \\
& x=3.5 \\
& x=6.5
\end{aligned}
$$

Since the basket is located to the right of the vertex of the parabola, $x=6.5$.
x-coordinate of the location of the basket: 6.5
y-coordinate of the location of the ball at the moment Caroline throws it
x-coordinate of the location of the ball at the moment Caroline throws it: $6.5-4.5=2$

$$
f(2)=-0.2(2-5)^{2}+3.45=1.65
$$

y-coordinate of the location of the ball at the moment Caroline throws it: 1.65
Answer: At the moment that Caroline throws the ball, the distance between the ball and the ground is 1.65 m .

C

C

C
\#67)
a) $x=3$

$$
y=4
$$

b) $\quad x=2$
$y=3$

The missing equation is $3 y=2 x$
or an equivalent equation such as $3 y-2 x=0$

750 agendas.

The coordinates of the points are $P(-6,5)$ and $Q(5,16)$.

The coordinates of point T are $T(22,6)$.

Let $\quad x$: represent the number of white balls
y : represent the number of green balls
x : represent the number of yellow balls
The system of equations

$$
\begin{aligned}
& 2 x+y=120 \\
& y+20=2 x
\end{aligned}
$$

Solution of the system of equations

$$
\begin{aligned}
2 x+y & =120 \\
2 x-y & =20 \\
4 x & =140 \\
x & =35 \quad \text { and } \quad y=50
\end{aligned}
$$

Result : The number of white and yellow balls is 35 each and the number of green balls is 50 .

Rule for calculating Annie's debt $D_{1}(x)$ as a function of the number of months elapsed x

$$
D_{1}(x)=500-40 x
$$

Rule for calculating Mark's debt $D_{2}(x)$ as a function of the number of months elapsed x

$$
D_{2}(x)=600-60 x
$$

Number of months elapsed when $\mathrm{D}_{1}(x)=\mathrm{D}_{2}(x)$

$$
\begin{aligned}
500-40 x & =600-60 x \\
20 x & =100 \\
x & =5
\end{aligned}
$$

Result : After 5 months, Annie's debt will be equal to Mark's.

Coordinates of point P

If $x=0$ then $y=4(0)^{2}-40(0)+101=101$
$P(0,101)$

Coordinates of point S

The x-coordinate of the vertex of the parabola:

$$
\frac{-b}{2 a}=\frac{-(-40)}{2 \times 4}=5
$$

The y-coordinate of the vertex of the parabola:

$$
S(5,1)
$$

Slope of the line passing through P and S
slope: $\frac{101-1}{0-5}=-20$
y-intercept of the line passing through P and S
The y-intercept of the line is the same as that of the parabola (i.e. 101).
Answer The equation of the line passing through points P and S is $y=-20 x+101$.

Coordinates of point M
In the equation of a parabola in the general form, the x-coordinate of the vertex is $x=\frac{-b}{2 a}$.
x-coordinate:

$$
\begin{aligned}
x & =\frac{-12}{2(-2)} \\
& =3
\end{aligned}
$$

y-coordinate

$$
\begin{aligned}
y & =-2(3)^{2}+12(3)-8 \\
& =10
\end{aligned}
$$

Coordinates of point $\mathrm{M}: \mathrm{M}(3,10)$
Equation of line MN
Slope

$$
\begin{aligned}
\frac{22-10}{0-3} & =\frac{12}{-3} \\
& =-4
\end{aligned}
$$

y-intercept : 22
Equation of line MN

$$
y=-4 x+22
$$

Coordinates of point N

$$
\left.\begin{array}{rl}
y=-2 x^{2}+12 x-8 \\
y=-4 x+22
\end{array}\right\} \quad \begin{aligned}
-2 x^{2}+12 x-8 & =-4 x+22 \\
-2 x^{2}+16 x-30 & =0 \\
-2\left(x^{2}-8 x+15\right) & =0 \\
(x-3)(x-5) & =0 \\
x & =3 \quad \text { or } \quad x=5
\end{aligned}
$$

If $x=3$, then $y=-4(3)+22=10$. This would be point M.
If $x=5$, then $y=-4(5)+22=2$. This would be point N.
Coordinates of point $\mathrm{N}: ~ \mathrm{~N}(5,2)$
Answer: \quad The coordinates of point N are $\mathrm{N}(5,2)$.

Let $\quad x=$ width of fenced-in plot in metres
$25-2 x=$ length of fenced-in plot in metres
Area of plot $=$ length \times width $=x(25-2 x)$

$$
\begin{aligned}
& x(25-2 x) \geq 50 \\
& 25 x-2 x^{2} \geq 50 \\
& -2 x^{2}+25 x-50 \geq 0 \\
& 2 x^{2}-25 x+50 \leq 0 \\
& (2 x-5)(x-10) \leq 0
\end{aligned}
$$

Zeros

$$
\begin{array}{lll}
2 x-5=0 & \text { or } & x-10=0 \\
x=2.5 & & x=10
\end{array}
$$

Zeros are 2.5 and 10
Width of plot 2.5 m
Answer The smallest value of dimension x is 2.5 m .

B

Result : $x \in] 2,4[$

48 seconds must elapse for the projectile to reach a height greater than 800 meters.

D

A

It will cost $\$ 13.25$ to send the parcel.

D

B

C

A

B

C

D

Rule of Correspondence
$C(n)=10-0.40\left[\frac{n}{100}\right]$
Number of kilograms of sugar ordered:
$4=10-0.40\left[\frac{n}{100}\right]$
$-6=-0.40\left[\frac{n}{100}\right]$
$15=\left[\frac{n}{100}\right]$
$15 \leq \frac{n}{100}<16$
Answer: The possible quantities of sugar, in kilograms, are [1500, 1600[.
$1500 \leq n<1600$

Greatest integer function

$$
\begin{aligned}
x=0 \Rightarrow \quad y & =32.5[0.05(0)+3]+52.5 \\
& =32.5[3]+52.5 \\
& =150 \mathrm{~cm}
\end{aligned}
$$

Step length $=\frac{1}{0.05}=20 \Rightarrow$ Last open point is $(20,150)$
Quadratic function

$$
\begin{aligned}
150 & =a(20-200)^{2}+30 \\
120 & =32400 a \quad \text { Equation } y=\frac{1}{270}(x-200)^{2}+30 \\
\frac{1}{270} & =a \\
x=180 \Rightarrow \quad y & =\frac{1}{270}(180-200)^{2}+30 \\
y & =31.48
\end{aligned}
$$

Answer: To the nearest tenth of a centimetre, the distance is 31.5 cm .

D

