Metric Relations in Right Triangles

If we draw a height to the hypotenuse of a right triangle (shown below)

Whenever we do this, we create 3 similar triangles by AA (angle-angle) - these are drawn in the same orientation below:

We often use lower case letters to represent side lengths to simplify notation, so in the original drawing we will label sides as follows:

Which means in our 3 similar triangles we get

Knowing that similar triangles have proportional sides, we can write each of the following proportions:

- With triangles 1 and $2: \quad \frac{a}{h}=\frac{b}{n}=\frac{c}{b}$

$$
\begin{array}{llll}
\text { cross multiplying } & \frac{b}{n}=\frac{c}{b} & \text { we get } & b^{2}=n c \quad \text { and } \\
\text { cross multiplying } & \frac{a}{h}=\frac{c}{b} & \text { we get } & a b=h c
\end{array}
$$

- With triangles 2 and $3: \quad \frac{h}{m}=\frac{n}{h}=\frac{b}{a}$
cross multiplying $\quad \frac{h}{m}=\frac{n}{h} \quad$ we get $\quad h^{2}=m n$
- With triangles 1 and 3: $\quad \frac{a}{m}=\frac{b}{h}=\frac{c}{a}$
cross multiplying

$$
\frac{a}{m}=\frac{c}{a} \quad \text { we get } \quad a^{2}=m c
$$

Using these four new equations, along with the Pythagorean Theorem, if you are given any two measurements, you can solve for all of the other measurements.

Example: In each of the following, solve for x .

We see that $b=15, m=9$ and x represents c,
so we can substitute in $b^{2}=n c$ to get

$$
\begin{aligned}
& 15^{2}=9 x \\
& 225=9 x \\
& 25=x
\end{aligned}
$$

2)

In this question $b=x, m=16$ and $c=25$
We can get n by subtracting $\mathrm{n}=25-16$ $\mathrm{n}=9$

We can then use $\quad b^{2}=n c$ once again

$$
x^{2}=9(25)
$$

$$
x^{2}=225
$$

$$
x=15 \text { (by square rooting both sides) }
$$

3)

Here we have $\mathrm{h}=12, \mathrm{~m}=16$ and $\mathrm{x}=\mathrm{c}$,

We know that

$$
\begin{aligned}
h^{2} & =m n \\
12^{2} & =16 \mathrm{n} \\
144 & =16 \mathrm{n} \\
9 & =\mathrm{n}
\end{aligned}
$$

Therefore

$$
\begin{array}{ll}
\text { This means } & x=9+16 \\
& x=25
\end{array}
$$

