To construct the roof of a house, an architect must determine the measures of the support beams of the roof.

$$m \overline{AC} = 6 m$$

$$m \overline{CE} = 8 m$$

$$m \overline{AE} = 10 m$$

What is the length of segment AF?

In rectangle ABCD shown below, line segment CE is perpendicular to diagonal BD. In addition, $m \overline{ED} = 9$ cm and $m \overline{CD} = 15$ cm.

What is the length of diagonal BD?

The length of diagonal BD is ______ 25_ cm.

Louise wants to buy the piece of land corresponding to triangle BAE shown in the rectangle below. 3

What is the area of this piece of land?

is the area of this piece of land?

your work.
$$\overrightarrow{AC} = 50 \text{ m}$$
 (Pythag)

 $\overrightarrow{BE} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{BC}$
 $\overrightarrow{BE} \cdot \overrightarrow{AC} = 30 (40)$
 $\overrightarrow{BE} = 34 \text{ m}$.

 $\overrightarrow{AB}^2 = \overrightarrow{AE} \cdot \overrightarrow{AC}$
 $\overrightarrow{AE} \cdot \overrightarrow{AE} \cdot \overrightarrow{AE} \cdot \overrightarrow{AE}$
 $\overrightarrow{AE} \cdot \overrightarrow{AE} \cdot \overrightarrow{AE} \cdot \overrightarrow{AE} \cdot \overrightarrow{AE}$
 $\overrightarrow{AE} \cdot \overrightarrow{AE} \cdot \overrightarrow{AE} \cdot \overrightarrow{AE} \cdot \overrightarrow{AE} \cdot \overrightarrow{AE}$
 $\overrightarrow{AE} \cdot \overrightarrow{AE} \cdot \overrightarrow{AE$

In the figure to the right, triangle ABC is right-angled at C and CE is an altitude.

m
$$\overline{AB} = 15$$
 cm and m $\overline{AC} = 12$ cm.

What is the perimeter of triangle ACE?

$$AC^2 = AE \cdot AB$$
 $12^2 = AE \cdot 15$
 $12^{12} = AE$
 $12^{12} = AE$
 $15^{15} = AE$

$$EC^{2} = BE \cdot EA$$

$$= \frac{48}{5} \cdot \frac{27}{5}$$

$$= \frac{16 \cdot 3 \cdot 3 \cdot 9}{5 \cdot 5}$$

$$EC = \frac{36}{5}$$

$$Perimeter of AACE = \frac{43}{5} + \frac{36}{5} + 12$$

$$= \frac{48 + 36 + 60}{5}$$

$$= \frac{9.6 + 7.2 + 12}{5} = \frac{144}{5} \text{ cm}$$

A kennel is the shape of a **square** topped by an **isosceles right triangle**, as shown in the adjacent sketch.

Each congruent side of the triangular roof measures 1 metre. The roof extends 0.2 metres over each side of the kennel.

What is the full height of the kennel?

Show your work.

ABC is a right triangle in which segment AD measures 10 cm and segment DC, 25 cm.

What is the measure of segment AB, to the nearest tenth?

$$\overline{AB}^2 = 10 (35)$$

 $\overline{AB}^2 = 2.5.5.7$
 $\overline{AB} = 5\sqrt{14}$ cm

ABC is a right triangle in which segment AD measures 5 cm and segment DC, 10 cm.

What is the measure of segment BD, to the nearest tenth?

$$\overline{BD}^2 = 5(10)$$

$$\overline{BD} = 5\sqrt{2} \text{ cm}.$$

A two-sided shelter is supported by vertical posts. The diagram below represents one end of this shelter.

Using the information given in the diagram, calculate the length of side BC.

$$BC^{2} = DC \cdot AC$$

$$= 10 \left(\frac{25}{2} \right)$$

$$= 5 \cdot 25$$

$$BC = 5 \sqrt{5} M.$$

Given triangle ABC with a right angle at A. AD is drawn perpendicular to BC at D and DE is drawn perpendicular to AC at E. The height AD measures 12 cm, hypotenuse BC measures 25 cm and side AC measures 20 cm.

In right-angled triangle ABC below, altitude BD coincides with a diagonal of rectangle FBED. 10

Line segments AD and DC measure 16 m and 9 m respectively.

Rounded to the nearest tenth, what is the perimeter of rectangle FBED?

Show your work.
$$\overline{DE} \cdot \overline{BC} = \overline{BD} \cdot \overline{DC}$$

$$\overline{DE} \cdot \overline{IS} = \overline{IZ} (9)$$

$$\overline{DE} = \underline{36}$$

Perimeter =
$$2DE + 2FD$$

$$= \frac{36}{5}$$

$$= \frac{36}{5} + \frac{96}{5}$$
Perimeter = $\frac{168}{5}$ m

In the following figure, ABC is a right triangle. 11

m
$$\overline{BF} = 5 \text{ cm}$$

m $\overline{BD} = 2 \text{ cm}$
 $\overline{BF} \perp \overline{AC}$
 $\overline{DE} \perp \overline{AC}$
 $\overline{FD} \perp \overline{BC}$

FD · 20 = 12 (16)

FD = 32(16)

What is the area of triangle FDC?

$$BF^{2} = BD \cdot BC$$
 $5^{2} = 2 \cdot BC$
 $25 = BC$
 $DC = \frac{25}{2} - 2$
 $= \frac{21}{2}$

FDC?

$$\overrightarrow{BF}^2 = \overrightarrow{BD} \cdot \overrightarrow{BC}$$
 $\overrightarrow{FD}^2 = 2 \cdot \frac{21}{2}$
 $5^2 = 2 \cdot \cancel{BC}$ $\overrightarrow{FD} = \sqrt{21}$
 $35 = \cancel{BC}$ Area $\triangle FDC = \overrightarrow{FD} \cdot \overrightarrow{DC}$
 $= \sqrt{21} \left(\frac{21}{2}\right)$
 $\overrightarrow{DC} = \frac{25}{2} - 2$ $= \frac{21}{2}$