Answers

Measure of segment AC
$\mathrm{m} \overline{\mathrm{AC}}=\sqrt{(\mathrm{m} \overline{\mathrm{BC}})^{2}+(\mathrm{m} \overline{\mathrm{AB}})^{2}}$
$\mathrm{m} \overline{\mathrm{AC}}=\sqrt{40^{2}+30^{2}}$
$\mathrm{m} \overline{\mathrm{AC}}=50 \mathrm{~m}$
Measure of segment BE

$$
\begin{aligned}
\mathrm{m} \overline{\mathrm{AB}} \times \mathrm{m} \overline{\mathrm{BC}} & =\mathrm{m} \overline{\mathrm{AC}} \times \mathrm{m} \overline{\mathrm{BE}} \\
30 \times 40 & =50 \times \mathrm{m} \overline{\mathrm{BE}} \\
\mathrm{~m} \overline{\mathrm{BE}} & =24 \mathrm{~m}
\end{aligned}
$$

Measure of segment AE
$m \overline{\mathrm{AE}}=\sqrt{(\mathrm{m} \overline{\mathrm{AB}})^{2}-(\mathrm{m} \overline{\mathrm{BE}})^{2}}$
$\mathrm{m} \overline{\mathrm{AE}}=\sqrt{30^{2}-24^{2}}$
$m \overline{\mathrm{AE}}=18 \mathrm{~m}$
Area of triangle ABE
Area $=\frac{\mathrm{m} \overline{\mathrm{AE}} \times \mathrm{m} \overline{\mathrm{BE}}}{2}$
Area $=\frac{18 \times 24}{2}$
Area $=216 \mathrm{~m}^{2}$

Result : The area of the piece of land is $216 \mathrm{~m}^{2}$.

4 Measure of $\overline{\mathrm{BC}}$

$$
\mathrm{m} \overline{\mathrm{BC}}=\sqrt{15^{2}-12^{2}}=9
$$

Measure of $\overline{\mathrm{CE}}$

$$
\begin{aligned}
\mathrm{m} \overline{\mathrm{CE}} \times \mathrm{m} \overline{\mathrm{AB}} & =\mathrm{m} \overline{\mathrm{AC}} \times \mathrm{m} \overline{\mathrm{BC}} \\
\mathrm{~m} \overline{\mathrm{CE}} \times 15 & =12 \times 9
\end{aligned}
$$

$$
\mathrm{m} \overline{\mathrm{CE}}=\frac{12 \times 9}{15}=7.2
$$

Measure of $\overline{\mathrm{AE}}$

$$
\mathrm{m} \overline{\mathrm{AE}}=\sqrt{12^{2}-(7.2)^{2}}=9.6
$$

Perimeter of triangle ACE : $12+7.2+9.6=28.8$
Result : The perimeter of triangle ACE is 28.8 cm .

Measure the roof's base, AC

$$
\begin{aligned}
(\mathrm{m} \overline{\mathrm{AC}})^{2} & =1^{2}+1^{2} \\
\mathrm{~m} \overline{\mathrm{AC}} & \approx 1.41
\end{aligned}
$$

Measure of one side of square

$$
1.41-2 \times 0.2=1.01
$$

Height BH of roof

$$
\begin{aligned}
\mathrm{m} \overline{\mathrm{AB}} \times \mathrm{m} \overline{\mathrm{BC}} & =\mathrm{m} \overline{\mathrm{AC}} \times \mathrm{m} \overline{\mathrm{BH}} \\
1 \times 1 & \approx 1.41 \times \mathrm{m} \overline{\mathrm{BH}} \\
\mathrm{~m} \overline{\mathrm{BH}} & \approx 0.71
\end{aligned}
$$

Full height of kennel

$$
1.01+0.71=1.72
$$

Answer : The full height of the kennel is 1.72 m .

$$
\begin{aligned}
& (\mathrm{m} \overline{\mathrm{BC}})^{2}=\mathrm{m} \overline{\mathrm{CD}} \times \mathrm{m} \overline{\mathrm{CA}} \\
& (\mathrm{~m} \overline{\mathrm{BC}})^{2}=10 \times 12,5 \\
& (\mathrm{~m} \overline{\mathrm{BC}})^{2}=125 \\
& \mathrm{~m} \overline{\mathrm{BC}}=5 \sqrt{5} \mathrm{~m} \approx 11.2 \mathrm{~m}
\end{aligned}
$$

Result : $\mathrm{m} \overline{\mathrm{BC}}=5 \sqrt{5} \mathrm{~m}$ or $\mathrm{m} \overline{\mathrm{BC}} \approx 11.2 \mathrm{~m}$.

9 In right triangle ADC, we apply the Pythagorean relation.

$$
\begin{aligned}
& (\mathrm{m} \overline{\mathrm{AC}})^{2}=(\mathrm{m} \overline{\mathrm{AD}})^{2}+(\mathrm{m} \overline{\mathrm{DC}})^{2} \\
& 20^{2}=12^{2}+(\mathrm{m} \overline{\mathrm{DC}})^{2} \\
& \mathrm{~m} \overline{\mathrm{DC}}=16
\end{aligned}
$$

a) $\angle \mathrm{ADC} \cong \angle \mathrm{AED} \quad$ Right angles.
b) $\angle \mathrm{DAC} \cong \angle \mathrm{DAE}$

Angles common to both triangles
c) $\triangle \mathrm{ADE} \sim \triangle \mathrm{ACD}$

Two triangles are similar if they have two corresponding angles congruent.

In two similar triangles, the corresponding sides are proportional.

$$
\begin{aligned}
& \frac{\mathrm{m} \overline{\mathrm{DE}}}{\mathrm{~m} \overline{\mathrm{DC}}}=\frac{\mathrm{m} \overline{\mathrm{AD}}}{\mathrm{~m} \overline{\mathrm{AC}}} \\
& \frac{\mathrm{~m} \overline{\mathrm{DE}}}{16}=\frac{12}{20} \\
& \mathrm{~m} \overline{\mathrm{DE}}=\frac{16 \times 12}{20}=9.6
\end{aligned}
$$

Result : 9.6 cm .

Measure of segment BD
$(\mathrm{m} \overline{\mathrm{BD}})^{2}=m \overline{\mathrm{AD}} \times \mathrm{m} \overline{\mathrm{DC}}$
$m \overline{\mathrm{BD}}=12$
$m \overline{\mathrm{BC}}=\sqrt{(\mathrm{m} \overline{\mathrm{BD}})^{2}+(\mathrm{m} \overline{\mathrm{DC}})^{2}}$

$$
=\sqrt{12^{2}+9^{2}}=15
$$

$m \overline{\mathrm{BD}} \times \mathrm{m} \overline{\mathrm{DC}}=\mathrm{m} \overline{\mathrm{BC}} \times \mathrm{m} \overline{\mathrm{DE}}$
$16 \times 9=15 \times \mathrm{m} \overline{\mathrm{DE}}$
$\mathrm{m} \overline{\mathrm{DE}}=144 \div 15=7.2$

$$
\begin{aligned}
\mathrm{m} \overline{\mathrm{BE}} & =\sqrt{(\mathrm{m} \overline{\mathrm{BD}})^{2}-(\mathrm{m} \overline{\mathrm{DE}})^{2}} \\
& =\sqrt{12^{2}-7.2^{2}}=9.6
\end{aligned}
$$

In a right triangle, the altitude from the hypotenuse is the proportional mean between the two segments it determines on the hypotenuse.

Pythagorean theorem
In a right-angled triangle, the product of the measures of the legs is equal to the product of the measures of the hypotenuse and the altitude drawn to the hypotenuse.

Perimeter of rectangle FBED

$$
\begin{aligned}
\mathrm{P} & =2 \mathrm{~m} \overline{\mathrm{BE}}+2 \mathrm{~m} \overline{\mathrm{DE}} \\
& =2 \times 9.6+2 \times 7.2=19.2+14.4=33.6
\end{aligned}
$$

Result : Rounded to the nearest tenth, the perimeter of rectangle FBED is 33.6 m .

11
Calculate m $\overline{\mathrm{DF}}$

$$
\begin{aligned}
& \sqrt{(\mathrm{m} \overline{\mathrm{BF}})^{2}-(\mathrm{m} \overline{\mathrm{BD}})^{2}}=\mathrm{m} \overline{\mathrm{DF}} \\
& \sqrt{5^{2}-2^{2}}=\mathrm{m} \overline{\mathrm{DF}} \\
& \sqrt{21}=\mathrm{m} \overline{\mathrm{DF}}
\end{aligned}
$$

Calculate $m \overline{\mathrm{CD}}$

$$
\begin{aligned}
\mathrm{M} \overline{\mathrm{BD}} \cdot \mathrm{~m} \overline{\mathrm{CD}} & =(\mathrm{m} \overline{\mathrm{DF}})^{2} \\
2 \cdot \mathrm{~m} \overline{\mathrm{CD}} & =21 \\
\mathrm{~m} \overline{\mathrm{CD}} & =\frac{21}{2}=10.5
\end{aligned}
$$

Area of triangle FDC

$$
\frac{\mathrm{m} \overline{\mathrm{CD}} \times \mathrm{m} \overline{\mathrm{DF}}}{2}=\frac{10.5 \times \sqrt{21}}{2} \approx 24.06
$$

Answer The area of triangle FDC is $24.06 \mathrm{~cm}^{2}$.

