Answer Key To Extended Answer

Work : (example)

Let x be the amount of money Matthew collected

$$
\begin{aligned}
x+\frac{x}{4}+97.35 & =300.00 \\
\frac{5 x}{4} & =202.65 \\
x & =162.12 \text { (Matthew) } \\
& 40.53 \text { (Philip) }
\end{aligned}
$$

Result Matthew collected \$162.12.
Philip collected \$40.53.

Work : (example)

Let x represent my money

Mathematize the situation

$$
5 x+3=6 x-18
$$

Solve the equation

$$
\begin{aligned}
6 x-5 x & =18+3 \\
x & =21
\end{aligned}
$$

Result \$21

Work : (example)

Let $\quad x$ be one of the numbers
$2 x$ be double the first number

Mathematize the situation

$$
x+2 x=-21
$$

Solve the equation

$$
\begin{aligned}
3 x & =-21 \\
x & =-7
\end{aligned}
$$

Result The two numbers are -7 and -14.
Work : (example)

Let $\quad x$ be one of the numbers $x-5$ be the other number

Mathematize the situation

$$
x+x-5=29
$$

Solve the equation

$$
\begin{aligned}
2 x-5 & =29 \\
2 x & =34 \\
x & =17 \\
x-5 & =12
\end{aligned}
$$

Result The two numbers are 12 and 17.

Work : (example)

Let x be Benjamin's age
$x+5$ be the age of the middle brother
$x+10$ be the age of the oldest brother
Mathematize the situation

$$
x+x+5+x+10=90
$$

Solve the equation

$$
\begin{array}{r}
3 x+15=90 \\
3 x=75 \\
x=25
\end{array}
$$

Result Benjamin is 25 years old.

Work : (example)

Let $\quad x$ be the price of a pair of skis
$3 x$ be the price of the bicycle

Mathematize the situation

$$
x+3 x=540
$$

Solve the equation

$$
\begin{aligned}
4 x & =540 \\
x & =135
\end{aligned}
$$

Price of the bicycle $135 \times 3=405$

Result The price of the bicycle is $\$ 405$.

7 Work : (example)

Let x be the number
Equation

$$
3 x-70=113
$$

Solution

$$
\begin{gathered}
3 x=183 \\
x=61
\end{gathered}
$$

Result The number is 61 .

Work : (example)
Let $\quad x$, Friday's tips
$2 x$, Saturday's tips
$2 x-30$, Sunday's tips

Equation

$$
\begin{aligned}
x+2 x+2 x-30 & =350 \\
5 x & =380 \\
x & =76
\end{aligned}
$$

Result \quad The waiter made $\$ 76$ on Friday, $\$ 152$ on Saturday and $\$ 122$ on Sunday.

Work : (example)
Let x, number of goals Paul scored

$$
6+x-3+x=25
$$

$$
2 x+3=25
$$

$$
2 x=22
$$

$$
\frac{2 x}{2}=\frac{22}{2}
$$

$$
x=11
$$

Result Paul scored 11 goals.

Work : (example)

Let $\quad x$ represent the number of Secondary 1 students
$3 x$ represent the number of Secondary 2 students $6 x$ represent the number of Secondary 3 students

Equation

$$
\begin{aligned}
x+3 x+6 x & =430 \\
10 x & =430 \\
x & =43
\end{aligned}
$$

Number of Secondary 2 students

$$
3 \times 43=129
$$

Result 129 Secondary 2 students participated.

Work : (example)
Let x : number of receipts
$2\left(\frac{x}{2}\right)+200 \times 5+10\left(x-200-\frac{x}{2}\right)=6200$

$$
\begin{aligned}
x+1000+5 x-2000 & =6200 \\
6 x-1000 & =6200 \\
6 x & =7200 \\
x & =\frac{7200}{6}=1200
\end{aligned}
$$

Result 1200 receipts.

Work : (example)

Student's age : x
Teacher's age : $4 x$

Equation

$$
\begin{aligned}
3(x+5) & =(4 x+5) \\
3 x+15 & =4 x+5 \\
10 & =x
\end{aligned}
$$

Result The student is 10 years old.

Work : (example)

Equation

$$
\begin{aligned}
x+4+2 x-1+3 x-7 & =44 \\
6 x-4 & =44 \\
6 x & =48 \\
x & =8
\end{aligned}
$$

Length of the three sides

$$
\begin{gathered}
x+4=8+4=12 \\
2 x-1=16-1=15 \\
3 x-7=24-7=17
\end{gathered}
$$

Result The length of the sides of the triangle are $12 \mathrm{~cm}, 15 \mathrm{~cm}$ and 17 cm .

Work : (example)
$1^{\text {st }}$ person $\rightarrow x$
$2^{\text {nd }}$ person $\rightarrow 2 x$
$3^{\text {rd }}$ person $\rightarrow 2 x-2$

$$
\begin{aligned}
(x)+(2 x)+(2 x-2) & =78 \\
5 x-2 & =78 \\
5 x & =80 \\
x & =16
\end{aligned}
$$

Result
16 years, 32 years and 30 years

Work : (example)

Let x : number of newspapers delivered by Cathy
$x+50$: number of newspapers delivered by Kelly

$$
\begin{aligned}
(x \times 0.10)+[(x+50) \times 0.10] & =25 \\
0.1 x+0.1 x+5 & =25 \\
0.2 x & =20 \\
x & =100
\end{aligned}
$$

As Cathy delivered 100 newspapers at $\$ 0.10$ each $100 \times \$ 0.10=\$ 10$.

Result Cathy received \$10.

Work : (example)

Let $x=$ number of compact disks sold in France

$$
\begin{aligned}
26000+x+x+8000 & =52000 \\
2 x & =18000 \\
x & =9000
\end{aligned}
$$

Number of compact disks he must sell in other francophone countries to meet his goal

$$
x+8000=9000+8000=17000
$$

Result 17000 compact disks

Work : (example)

Let x be the winning number

Four fifths on the number : $\frac{4}{5} x$

Triple the number : $3 x$

$$
\begin{aligned}
\frac{4}{5} x+3 x & =1140 \\
4 x+15 x & =5700 \\
19 x & =5700 \\
x & =300
\end{aligned}
$$

Result The winning number is 300.

Work : (example)

Let $\quad x$, represent the number of screws
$4 x+12$, the number of nails
$x+5$, the number of pieces of wood

$$
\begin{aligned}
x+4 x+12+x+5 & =59 \\
6 x & =42 \\
x & =7
\end{aligned}
$$

Result 7 screws, 40 nails and 12 pieces of wood are needed to build the bird house.

Work : (example)
Find the value of x

$$
\begin{aligned}
2(2 x-1)+2(3 x+3) & =24 \\
4 x-2+6 x+6 & =24 \\
10 x & =20 \\
x & =2
\end{aligned}
$$

Find the floor dimensions

$$
\begin{array}{ll}
\text { width: } & 2 x-1 \\
& 2 \times 2-1=3 \\
\text { length : } & 3 x+3 \\
& 3 \times 2+3=9
\end{array}
$$

Find the area of the floor

$$
\begin{aligned}
& \text { Area }=\text { width } \times \text { length } \\
& \text { Area }=3 \times 9 \\
& \text { Area }=27
\end{aligned}
$$

Result \quad The area of floor to be covered is $27 \mathrm{~m}^{2}$.

Work : (example)

Perimeter

$$
\begin{array}{r}
2(x+(2 x-3))=26.16 \\
x+(2 x-3)=13.08 \\
3 x-3=13.08 \\
3 x=16.08 \\
x=5.36
\end{array}
$$

Width : 5.36 m
Length : 2(5.36) - $3=7.72 \mathrm{~m}$
Result The dimensions are : 5.36 m and 7.72 m .

Example of an appropriate method
Given $x: \quad$ number of watts consumed by a blender
$5 x: \quad$ number of watts consumed by a hair dryer
$5 x-100: \quad$ number of watts consumed by a curling iron

Mathematize the situation

$$
x+5 x+5 x-100=2100
$$

Solve the equation

$$
\begin{aligned}
11 x-100 & =2100 \\
11 x & =2200 \\
x & =200 \\
5 x & =1000 \\
5 x-100 & =900
\end{aligned}
$$

Answer The blender consumes 200 watts of energy, the hair dryer consumes 1000 watts of energy, and the curling iron consumes 900 watts of energy.
x, the number of books Victor read
$3 x$, the number of books Austin read
$3 x-4$, the number of books Jena read

Mathematization

$$
3 x+x+3 x-4=31
$$

Solution of equation

$$
\begin{aligned}
7 x-4 & =31 \\
7 x & =35 \\
x & =5
\end{aligned}
$$

Answer Victor has read 5 books.
Austin has read 15 books.
Jena has read 11 books.

Example of an appropriate solution

Dimensions of field (Rectangle B)

$$
\begin{aligned}
3(2 x+1) & =6 x+3 \\
3(x) & =3 x
\end{aligned}
$$

Perimeter of enclosure (Rectangle A)

$$
\begin{aligned}
2(2 x+1)+2(x) & =4 x+2+2 x \\
& =6 x+2
\end{aligned}
$$

Perimeter of field (Rectangle B)

$$
\begin{aligned}
2(6 x+3)+2(3 x) & =12 x+6+6 x \\
& =18 x+6
\end{aligned}
$$

Length of the fence

$$
\begin{aligned}
6 x+2+18 x+6 & =248 \\
24 x+8 & =248 \\
24 x & =240 \\
x & =10
\end{aligned}
$$

Perimeter of the horses' enclosure (Rectangle A)

$$
6(10)+2=62
$$

Answer The actual perimeter of the horses' enclosure is 62 m .

Example of an appropriate solution

Given $\quad x$: the age of the child
$5 x$: the age of the father
$5 x-3$: the age of the mother
74: the sum of the ages

Equation

$$
x+5 x+5 x-3=74
$$

Solving the equation

$$
\begin{array}{r}
x+5 x+5 x-3=74 \\
11 x-3=74 \\
11 x=77 \\
x=7
\end{array}
$$

The age of the child: 7
The age of the father: $5 \times 7=35$
The age of the mother: $5 \times 7-3=32$

Answer The father is $\mathbf{3 5}$ years old.
The mother is $\mathbf{3 2}$ years old
The child is $\mathbf{7}$ years old.

Let | x | be the amount (\$) Stephanie contributed |
| ---: | :--- |
| $2 x \quad$ | be the amount (\$) Ed contributed |
| $3 x+10$ be the amount (\$) Caroline contributed | |
| $(3 x+10)+2 x+x$ | $=310$ |
| $6 x+10$ | $=310$ |
| $6 x$ | $=300$ |
| x | $=50$ |

Answer: Stephanie contributed \$50.
Ed contributed \$100.
Caroline contributed $\$ 160$.

Example of an appropriate solution

Let w be the width of the cover in cm
$2 w-4$ be the length of the cover in cm

$$
\begin{aligned}
2[w+(2 w-4)] & =166 \\
6 w-8 & =166 \\
6 w & =174 \\
w & =29
\end{aligned}
$$

Width is 29 cm , length is 54 cm

Area is $\quad 29 \times 54=1566$

Answer: The area of the cover is $1566 \mathrm{~cm}^{2}$.

Example of an appropriate solution
Area of triangle

$$
\frac{10(2 x+4)}{2}=(10 x+20)
$$

Base of rectangle

$$
2(2 x+4)=(4 x+8)
$$

Area of rectangle

$$
10(4 x+8)=(40 x+80)
$$

Combined area

$$
\begin{aligned}
(10 x+20)+(40 x+80) & =300 \\
50 x+100 & =300 \\
50 x & =200 \\
x & =4
\end{aligned}
$$

Perimeter of rectangle

$$
2(10)+2(4 x+8)=8 x+36
$$

Substituting value of 4
Perimeter

$$
8(4)+36=68
$$

Answer: \quad The perimeter of the rectangle is $\mathbf{6 8} \mathbf{~ c m}$.

Example 2

Using ratio of areas, find value of y

$8(5 y-7)$	$=132$
$40 y-56$	$=132$
$40 y$	$=188$
y	$=4.7$

$$
\begin{aligned}
& \frac{1}{8} \text { of area }=44 \div 8=5.5 \\
& \frac{3}{8} \text { of area }=5.5 \times 3=16.5
\end{aligned}
$$

Value of y : $5 y-7=16.5$

$$
\begin{array}{ll}
5 y & =23.5 \\
y & =4.7
\end{array}
$$

Answer: The value of y is 4.7.

Example of an appropriate solution
Area of the rectangle

$$
\begin{aligned}
18(3 x+2) & =144 \\
54 x+36 & =144 \\
54 x & =108 \\
x & =2
\end{aligned}
$$

Height of triangle

$$
\begin{aligned}
3 x+2 & =3(2)+2 \\
& =8
\end{aligned}
$$

Area of triangle

$$
\begin{aligned}
\frac{144}{3} & =48 \\
8 \times \frac{\text { base }}{2} & =48 \\
8 \text { base } & =96 \\
\text { base } & =12
\end{aligned}
$$

Answer: The base of the shaded triangle measures $\mathbf{1 2} \mathbf{~ c m}$.

Example of an appropriate solution
Let $\quad x$, be the amount of money Lucy has
$x-5$, amount of money Jennifer has
$2(x-5)$, amount of money Silvia has
Mathematization

$$
x+x-5+2(x-5)=65
$$

Solve the equation

$$
\begin{array}{r}
4 x-15=65 \\
4 x=80 \\
x=20
\end{array}
$$

Answer Lucy has \$20.
Jennifer has \$15.
Silvia has \$30.
Work : (example)
Gonzo's age : $3 x-6$
Touta's age : $3 x-6+x+2=4 x-4$
Kali's age : $3 x-6-x-4=2 x-10$
Sum of their ages

$$
3 x-6+4 x-4+2 x-10=205
$$

Value of x

$$
\begin{aligned}
9 x-20 & =205 \\
9 x & =225 \\
x & =25
\end{aligned}
$$

Age of the guards
Gonzo : 3(25) $-6=69$
Touta : 4(25) - $4=96$
Kali : $2(25)-10=40$
Result The oldest of the 3 guards is 96 years old.

Work : (example)
Perimeter

$$
\begin{aligned}
a+2 a+a+a+a+3 a+3 a+4 a & =56 \\
16 a & =56
\end{aligned}
$$

Solution

$$
\begin{aligned}
16 a & =56 \\
a & =\frac{56}{16} \\
a & =3.5
\end{aligned}
$$

Result The variable a represents 3.5 m .

Work : (example)
Let x be the maximum number of marks per question Mathematize the situation

$$
6 x+\frac{4 x}{4}+\frac{2 x}{3}+\frac{x}{2}+0=49
$$

Solve the equation

$$
\begin{aligned}
6 x+x+\frac{2 x}{3}+\frac{x}{2} & =49 \\
\left(6+1+\frac{2}{3}+\frac{1}{2}\right) x & =49 \\
\left(\frac{36+6+4+3}{6}\right) x & =49 \\
\frac{49 x}{6} & =49 \\
x & =\frac{49 \times 6}{49}=6
\end{aligned}
$$

Result Each question was worth 6 marks.

Work : (example)
x, represents the numbers of volunteers in the $1^{\text {st }}$ group.
$x+20$, represents the number of volunteers in the $2^{\text {nd }}$ group.
$2 x$, represents the number of volunteers in the $3^{\text {rd }}$ group.

Number of cans collected by the $1^{\text {st }}$ group : $2 x$
Number of cans collected by the $2^{\text {nd }}$ group : $\quad 3(x+20)$
Number of cans collected by the $3^{\text {rd }}$ group : $\quad 6(2 x)$

Total number of cans collected

$$
\begin{aligned}
2 x+3(x+20)+6(2 x) & =740 \\
2 x+3 x+60+12 x & =740 \\
17 x & =680 \\
x & =40
\end{aligned}
$$

Number of volunteers per group
$1^{\text {st }}$ group : 40
$2^{\text {nd }}$ group : $40+20=60$
$3^{\text {rd }}$ group : $2 \times 40=80$

Total number of volunteers

$$
40+60+80=180
$$

Result 180 volunteers participated in this food drive.

Work : (example)

Let $\quad x$, mark on $1^{\text {st }}$ test
$2 x-36$, mark on $2^{\text {nd }}$ test
$\frac{3}{4}(2 x-36)$, mark on $3^{\text {rd }}$ test
$x+2 x-36+\frac{3}{4}(2 x-36)=216$
$x-63=216$

$$
x=62
$$

Result David's mark on the first test was 62 \%.

Example of an appropriate procedure

The student solved the problem by writing the correct equation and solving it.

Answer 3 bananas, 6 apples and 12 oranges were used to make this salad.

Example of an appropriate solution
Let $\quad x$, be the cost of the soap
$x+15$, the cost of the body cream
$2(x+15)$, the cost of the perfume
Equation

$$
x+(x+15)+2(x+15)=72
$$

Solution

$$
\begin{aligned}
4 x+45 & =72 \\
4 x & =27 \\
x & =6.75
\end{aligned}
$$

Cost of the perfume

$$
2(6.75+15)=43.50
$$

Answer The cost of the perfume is $\$ 43.50$.

Example of an appropriate method
Let $\quad x$ be the number of roses
$x-5$, the number of carnations
$3(x-5)$, the number of daisies

Equation representing the situation

$$
x+x-5+3(x-5)=30
$$

Solving the equation

$$
\begin{aligned}
x+x-5+3 x-15 & =30 \\
5 x-20 & =30 \\
5 x & =50 \\
x & =10
\end{aligned}
$$

Answer: \quad There are 5 carnations, 10 roses and 15 daisies in Kristin's bouquet.

Example of an appropriate solution

Let $\quad x$: width

$$
3 x+5: \text { length }
$$

$$
\begin{aligned}
2(3 x+5+x) & =314 \\
6 x+10+2 x & =314 \\
8 x+10 & =314 \\
8 x & =304 \\
x & =38
\end{aligned}
$$

$3 x+5$

Width: $x=38 \mathrm{~m}$
Length: $3 x+5=3 \times 38+5=119 \mathrm{~m}$
Area of the rectangular field

$$
A=w \times L
$$

Area: $38 \mathrm{~m} \times 119 \mathrm{~m}=4522 \mathrm{~m}^{2}$

Cost of the sod

$$
4522 \mathrm{~m}^{2} \times \$ 1.50 / \mathrm{m}^{2}=\$ 6783
$$

Answer It will cost $\$ 6783$ to cover the field with sod.

Example of an appropriate solution

Given $\quad x$: number of children's T-shirts

$$
(24-x): \text { number of adult T-shirts }
$$

Equation

$$
\begin{aligned}
3 x+5(24-x) & =110 \\
3 x+120-5 x & =110 \\
3 x-5 x & =110-120 \\
-2 x & =-10 \\
x & =5 \\
24-x & =19
\end{aligned}
$$

Answer: Nicolas sold $\mathbf{5}$ children's T-shirts and 19 adult T-shirts.

