\qquad

Identify each of the following pairs of lines as either parallel (PAR), perpendicular (PERP) or intersecting but not perpendicular (INT)

	Line 1	$\underline{\text { Line 2 }}$	Answer
a)	$y=-8 x+5$	$y=\frac{1}{8} x+5$	
b)	$y=x+6$	$y=x-\frac{1}{6}$	
c)	$y=5$	$x=2$	
d)	$y=5-2 x$	$y=\frac{1}{5}-2 x$	
e)	$x=\frac{1}{3}$	$y=3$	
f)	$y=-12 x+14$	$y=-\frac{3}{8} x-25$	
g)	$3 x-8 y+6=0$	$y=-\frac{3}{2} x-3$	
h)	$2 x=3 y+9$	$5 y+4 x-65=0$	
i)	$-5 y=-4 x$	$3 y-6=-4 x$	$y 5=-3 y$
j)			

	Line 1	Line 2	Answer
a)	Passes through points $\mathrm{A}(5,4)$ and $\mathrm{B}(4,5)$	Passes through points $\mathrm{C}(2,6)$ and $\mathrm{D}(6,2)$	
b)	Passes through points $\mathrm{A}(8,4)$ and $\mathrm{B}(7,9)$	Passes through points $\mathrm{C}(2,3)$ and $\mathrm{D}(7,4)$	
c)	Passes through points $A(5,2)$ and $B(-4,5)$	Passes through points $\mathrm{C}(-2,5)$ and $\mathrm{D}(3,2)$	
d)	Passes through points $\mathrm{A}(12,4)$ and $\mathrm{B}(-4,5)$	Passes through points $\mathrm{C}(-10,3)$ and $\mathrm{D}(6,2)$	
e)	Passes through points $\mathrm{A}(-5,21)$ and $\mathrm{B}(-14,8)$	Passes through points $\mathrm{C}(2,7)$ and $\mathrm{D}(5,12)$	
f)	Passes through points $\mathrm{A}(-16,11)$ and $\mathrm{B}(10,5)$	Passes through points $C(12,-16)$ and $D(-4,-2)$	
g)	Passes through points $\mathrm{A}(-5,4)$ and $\mathrm{B}(4,5)$	Passes through points $\mathrm{C}(2,6)$ and $\mathrm{D}(1,15)$	
h)	Passes through points $\mathrm{A}(-3,9)$ and $\mathrm{B}(4,5)$	Passes through points $\mathrm{C}(2,6)$ and $\mathrm{D}(9,2)$	
i)	Passes through points $\mathrm{A}(5,-3)$ and $\mathrm{B}(4,5)$	Passes through points $C(-2,3)$ and $\mathrm{D}(6,2)$	
j)	Passes through points $\mathrm{A}(-50,-14)$ and $\mathrm{B}(4,5)$	Passes through points $\mathrm{C}(21,14)$ and $\mathrm{D}(61,-20)$	

