PROBABILITY LESSON 1

RANDOM EVENT: an event whose result cannot be predicted with absolute certainty

Examples

Random	Not random
- getting stung by a bee	• getting older
• winning the lottery	- rolling a number BETWEEN 0 and
\bullet tossing a coin or die	7 on a die

PROBABILITY is related to the likelihood that something will happen.
$\mathrm{P}(\mathrm{A})$ represents the probability that event "A" will occur, it can be represented as a fraction, decimal or percent.

Ex. What is the probability that the sun will rise in the east tomorrow?
Answer: P(sun will rise in the east tomorrow) $=100 \%$ or 1
(this is definitely NOT a random event)

Ex. What is the probability that you will roll a 5 on a regular die? (dice is plural)
Answer: $\quad \mathrm{P}(5)=1 / 6$ or .17 or 17%

A CERTAIN EVENT has a 100% of happening.

Ex. There will be snow during the winter somewhere in Canada.
Getting burned if you touch a hot stove.
Rolling a number less than 7 on a regular die.

An IMPOSSIBLE EVENT has NO chance (0\%) of happening.

Ex. A live shark flying through the class window in the next 15 seconds.
Rolling a number greater than 6 on a regular die.

THE COMPLEMENT OF AN EVENT (we represent this with an apostrophe `)
This is the probability that an event will NOT occur. The probability of an event plus the probability of it's complementary event will always add up to 1 (or 100\%)

Ex. If R is the event that it will rain tomorrow and $P(R)=0.3$
Then the probability that it will NOT rain tomorrow is $\mathrm{P}\left(\mathrm{R}^{\prime}\right)=1-0.3$ or 0.7

The SAMPLE SPACE, often represented by the OMEGA SYMBOL, Ω, is used to represent all possible outcomes for a given situation.

Ex. $\Omega=\{1,2,3,4,5,6\}$ for rolling a die
$\Omega=\{$ heads, tail $\}$ for tossing a coin
$\Omega=\{$ red, blue, yellow $\}$ for picking a primary colour
$\Omega=\{$ I, II, III, IV $\}$ for choosing a quadrant in a Cartesian Plane
$\Omega=\{$ on, off $\}$ for a light switch

COMBINATIONS $=$ Total \# of Possible Outcomes (multiply!!) $=$ the number of elements in Ω this makes up the denominator of the probability ratio
When you are asked to calculate all possible outcomes for a given situation, you multiply.

Ex. I have 3 pairs of pants, 5 shirts and 4 pairs of shoes. How many different outfits can I create?

$$
\begin{aligned}
& \text { (3) } \begin{array}{c}
(5) \\
(\text { pants })
\end{array}(\text { (shirts)(shoes) }
\end{aligned}
$$

Ex. I roll a regular 6-sided die twice
$\left(6\right.$ outcomes on the $1^{\text {st }}$ roll) (6 outcomes on the $2^{\text {nd }}$ roll) $=36$ different outcomes

Ex. I flip a coin 3 times
(2 outcomes on $1^{\text {st }}$ toss) (2 outcomes on $2^{\text {nd }}$ toss) (2 outcomes on $3^{\text {rd }}$ toss) $=8$ different outcomes

SIMPLE VS COMPOUND EVENTS

Random experiments can either be simple (one event) or compound (more than one event).

Examples

Simple Events	Compound Events
- picking one card from a deck - drawing one name from a hat - rolling a die once - flipping a coin once	- taking 2 marbles from a jar - rolling a die twice - rolling two dice - flipping a coin twice - flipping three coins - flipping a coin once AND rolling a die once

Here is how you could record some of the possible outcomes in a compound experiment.

$$
\begin{array}{llll}
\text { Ex. Flip a coin and roll a die. } & (\mathrm{H}, 4) & (\mathrm{H}, 3) & (\mathrm{T}, 1) \\
\text { Ex. Tossing } 2 \text { dice four times. } & (6,2)(3,4)(1,1)(5,3) \\
\text { Ex. Flipping three coins twice. } & (\mathrm{H}, \mathrm{H}, \mathrm{~T}) & (\mathrm{T}, \mathrm{~T}, \mathrm{~T})(\mathrm{T}, \mathrm{H}, \mathrm{~T})
\end{array}
$$

PROBABILITY OF COMPOUND EVENTS

To calculate the probabilities that multiple events WILL occur, we multiply each of the probabilities

Ex. If the probability of it raining today is 0.2 and the probability of it raining tomorrow is 0.3 , then:
$\mathrm{P}($ rain today AND rain tomorrow) $\quad=(0.2)(0.3)$

$$
=0.06 \text { or } 6 \%
$$

DEPENDENT VS INDEPENDENT EVENTS

Compound events can be independent or dependent.

INDEPENDENT (one outcome has NO effect on the probability of the next outcome) ** WITH REPLACEMENT	DEPENDENT (the outcome of one event DOES effect the probability of another outcome) **WITHOUT REPLACEMENT
If I roll a 5 on a die, it does NOT change the likelihood of what I will roll next What I get on the spinner the first time does not change the probability of what I get on the spinner the next time. If I have 2 red marbles and 3 blue marbles in a bag. I pick one marble, put it back in the bag and choose a $2^{\text {nd }}$ marble, then all of the probabilities each time I choose remain the same. $\begin{aligned} \mathrm{P}(\text { both red }) & =\frac{2}{5} \cdot \frac{2}{5} \\ & =\frac{4}{25} \quad \text { or } 16 \% \end{aligned}$	If I have 2 red marbles and 3 blue marbles in a bag. I pick one marble, DO NOT put it back in the bag and choose a $2^{\text {nd }}$ marble, then the probabilities of getting red \& blue for the $2^{\text {nd }}$ marble will be different. $\mathrm{P}(\text { both red })=\frac{2}{5} \cdot \frac{1}{4}$ (if the $1^{\text {st }}$ is red, then there is only 1 red left out of 4 marbles) $\begin{aligned} & =\frac{2}{20} \\ & =\frac{1}{10} \text { or } 10 \% \end{aligned}$

