\qquad

1 The parabola represented below crosses the x-axis at the points $(-1,0)$ and $(3,0)$ and its vertex is the point $\mathrm{P}(1,-4)$.

What is the equation, in general form, of the parabola graphed above?

The graph at the right illustrates a function defined in the interval $[-10,10]$.

For what values of x is $\mathrm{f}(x) \geq 0$?

4 The parabolic trajectory (path) of a ball thrown from Pat to Chris is illustrated in the Cartesian diagram below.

The distance between Pat, who is standing at the origin, and Chris is 8 m . The maximum height reached by the ball is 4 m .

What is the equation of this quadratic function in general form?

Temperature changes recorded on a given day in April can be represented by a quadratic function.

The function is graphed on the right.
What is the rule of this function in standard form?

6 What is the rule of the quadratic function that has a range of $-\infty, 4]$ and is positive for $x \in]-1,3[$?

7 An analysis of the value of a share bought for $\$ 2.00$ shows that, during the first 6 months, its value (v) changed according to the following rule:

$$
\mathrm{v}(t)=-\frac{1}{4} t^{2}+2 t+2
$$

where t represents the number of months since the share was purchased.
What was the maximum value of the share during this period?

8 Given the real function defined by $f(x)=x^{2}-2 x+1$. How many zeros does this function have?

9 Students from the school's science club observed that the outdoor temperature recorded at five o'clock between the $1^{\text {st }}$ and the $20^{\text {th }}$ of May was determined by the rule.

$$
\mathrm{t}(x)=\frac{1}{16} x^{2}-x+3
$$

where x is the number of days elapsed since the $1^{\text {st }}$ of May.
What was the minimum outdoor temperature recorded during this period?

The altitude of a remote-controlled toy airplane is expressed by the following equation :

$$
\mathrm{f}(t)=\frac{-1}{4} t^{2}+3 t+4
$$

where t represents the time of the flight expressed in minutes and $f(t)$ is in metres.
Over what interval(s) of time is the altitude decreasing?

11 Thomas threw the winning basket during a basketball tournament. He was situated 4.5 m away from the base of the basket.

The side view of the trajectory of the ball is represented in the Cartesian plane below.

The trajectory is in the form of a parabola whose vertex is at $(2,5)$.
The height of the basket is 3 m .
To the nearest hundredth metre, what is Thomas's height?

Quadratic Function Practice Questions A

$1 y=x^{2}-2 x-3$
2 [-2, 6]
$3 \mathrm{f}(x)=x^{2}-6 x+5$
$4 x^{2}-8 x+4 y=0$
$5 \mathrm{f}(t)=\frac{-8}{49}(t-14)^{2}+8$
$6 \mathrm{k}(x)=-x^{2}+2 x+3$
$7 \quad \$ 6.00$
8 One
$9-1{ }^{\circ} \mathrm{C}$
10 [10, 13]
11 Find the rule of correspondence
Point (0, 3) Vertex (2, 5)

$$
\begin{aligned}
y & =a(x-h)^{2}+k \\
y & =a(x-2)^{2}+5 \\
3 & =a(0-2)^{2}+5 \\
3 & =4 a+5 \\
-2 & =4 a \\
-0.5 & =a
\end{aligned}
$$

Thus, $y=-0.5(x-2)^{2}+5$
Thomas's height

$$
\begin{aligned}
& (4.5, h) \\
& h=-0.5(x-2)^{2}+5 \\
& h=-0.5(4.5-2)^{2}+5 \\
& h=-3.125+5 \\
& h=1.875
\end{aligned}
$$

Answer: \quad To the nearest hundredth metre, Thomas's height is $\mathbf{1 . 8 8} \mathrm{m}$.

