Representing Equivalent Ratios: Party Favors!

You are making small bags of candy to give to your friends as party favors. You are placing 3 red peppermint candies and 2 yellow lemon candies in each party favor bag.

- Use centimeter cubes to model one party favor bag. Record the number of each color of candy. Draw this model in your table with colored pencils.
- You are now making your second party favor bag. How many of each color do you need for two bags? Model this with your centimeter cubes.
- Complete the table.

Number of Party Favor Bags	Number of Red Candies	Number of Yellow Candies	Model
1			
2			
3			
4			
4			

1. How many red peppermint candies are there for every 2 yellow lemon candies?
2. What pattern do you notice in the number of red candies?
3. What pattern do you notice in the number of yellow candies?
4. When you completed your second bag, what happened to the number of red candies and yellow candies?
5. What is the total number of candies is in one bag? What is the total number of candies in 4 bags?
6. How many candies would you have if you had 10 bags of candy? Explain your reasoning.

Representing Equivalent Ratios: Party Favors! Part II

- Use Data from Representing Equivalent Ratios: Party Favors! to complete the tables and graphs below.
- Answer the questions on the following page.

1.

Number of Red Candies	Number of Yellow Candies

2.

Number of Yellow Candies	Total Number of Candies

3. | $\begin{array}{c}\text { Number of } \\ \text { Red Candies }\end{array}$ | $\begin{array}{c}\text { Total Number } \\ \text { of Candies }\end{array}$ |
| :--- | :--- |
| | |
| | |
| | |
| | |

©2010 Texas Education Agency. All Rights Reserved 2010

4. How are the tables alike?
5. How are the tables different?
6. How are the graphs alike?
7. How are the graphs different?
8. How many yellow candies you would have if you had 18 red candies? Use the first graph to help you.
9. What strategy could you use to check your answer to problem \#6 in Representing Equivalent Ratios: Party Favors!
10. What does the ordered pair $(0,0)$ mean in each graph?
11. What does the ordered pair $(6,4)$ mean in the first graph?

Representing Equivalent Ratios: A Bouquet of Flowers!

You are arranging a bouquet of flowers for each table at the party. In each bouquet of flowers there are 2 red roses for every 1 yellow rose.

- Complete the table.
- Graph the data from your table in two different ways.

Number of Red Roses	Number of Yellow Roses	Total
2	1	
	4	
12		
	5	9
	2	

1. Explain how you found the missing values from the table.
2. Explain how the two graphs are alike?
3. Explain how the two graphs are different?

Jewelry Beads

A bag of jewelry beads contains only red and white beads. The ratio of red to white beads is 5 to 3 .

- Work with a partner to solve the follow problems.

Jewelry Bag A:
Bag A has 24 white beads. How many red beads are in the bag?

Jewelry Bag B:

Bag B has 60 red beads in the bag. How many white beads are in the bag?

Jewelry Bag C:
Bag C has 136 beads. How many do you expect to be red and how many do you expect to be white? pounds of oranges can be bought with $\$ 12.00$?
: Mario and Juan were competing to see who would :

- bag the most sacks in 4 hours while working at the . . grocery store. Mario bagged 5 sacks every 15
. minutes and Juan bagged 2 sacks every 5 minutes? .Who bagged more sacks?

Store A: 3 chocolate candy bars for $\$ 1.50$
. Store B: 5 chocolate candy bars for $\$ 3.00$
Who has the better price per candy bar?

- Between Sana and Dina they have $\$ 32$ to go to the - movies. Sana has 3 times more money than Dina. .How much money do they each have?

Popcorn Sales

Robert is selling popcorn for the baseball tournament fundraiser. One customer bought 3 boxes and paid $\$ 12.00$. If each box is the same price, what is the price of 1 box of popcorn?

1. Complete the table.

Number of Boxes	Price
1	
2	
3	12.00

2. Label and graph the data from your table.

3. Do the points seem to fall in a line? Explain why you think this is so?
4. Use your graph to determine the price of 5 boxes of popcorn.
5. What does the ordered pair $(4,16)$ mean in this scenario?
6. Would it make sense to graph the ordered pair (0, 0)? Explain.
7. Write a number sentence that could be used to determine the price of 15 boxes of popcorn.

