Trigonometry

Finding a missing side in a right triangle given one angle and a side

- Label the side which is given (opposite, adjacent or hypotenuse)
- Label the side you need to find (opposite, adjacent or hypotenuse)
- Use $S \frac{O}{H} C \frac{A}{H} T \frac{O}{A}$ to determine the appropriate ratio (sine, cosine or tangent) based on the two sides you have labelled
- Write an equation for the ratio
- Cross-multiply and solve for the missing side

Examples: For each triangle solve for the measure of side x.

Question 1
Solution:

Reference angle
With OPPOSITE \& ADJACENT WE USE $T \frac{O}{A}$

The equation will be $\tan 48^{\circ}=\frac{x}{2}$
if we write this as a proportion we get:

$$
\begin{aligned}
& \frac{\tan 48^{\circ}}{1}=\frac{x}{2} \quad \text { and cross-multiplying we get... } \\
& \begin{array}{l}
x=2 \cdot \tan 48^{\circ} \quad \text { calculating we get.... } \\
x=2.22 \text { units }
\end{array}
\end{aligned}
$$

Solution

63° is the reference angle
13 is the "OPPOSITE SIDE" x is the "HYPOTENUSE"

With Opposite \& Hypotenuse we use $S \frac{O}{H}$
Equation: \quad The equation will be $\sin 63^{\circ}=\frac{13}{x}$ if we write this as a proportion we get:

$$
\begin{aligned}
& \frac{\sin 63^{\circ}}{1}=\frac{13}{x} \quad \text { and cross-multiplying we get... } \\
& x \cdot \sin 63^{\circ}=13 \quad \text { dividing by } \sin 63^{\circ} \text { we get.... } \\
& x=\frac{13}{\sin 63^{\circ}} \quad \text { calculating we get... } \\
& x=14.59 \text { units }
\end{aligned}
$$

