\qquad

A hot air balloon is secured to the ground by a 60 m long rope. A gust of wind caused it to veer slightly, creating an 80° angle between the rope and the ground.

Which of the following equations can be used to calculate the altitude of the hot air balloon?
A) $a=60 \sin 80^{\circ}$
B) $a=60 \cos 80^{\circ}$
C) $a=\frac{60}{\cos 80^{\circ}}$
D) $a=\frac{60}{\sin 80^{\circ}}$

The teacher asked his students to find the trigonometric ratio to be used to calculate the measurement of angle A in the following right triangle.

Which of the following equations is correct?
A) $\quad \sin \mathrm{A}=\frac{b}{c}$
B) $\sin \mathrm{A}=\frac{a}{b}$
C) $\quad \cos \mathrm{A}=\frac{a}{c}$
D) $\cos \mathrm{A}=\frac{b}{c}$

Triangle RST is right-angled at S . Which of the following expressions defines the ratio of the length of segment ST to the length of segment RS?
A) $\sin R$
B) $\sin \mathrm{S}$
C) $\cos \mathrm{S}$
D) $\tan R$

A crane is transporting a large block of cement.
The crane operator wants to determine the angle of elevation A of the boom.

Which equation can be used to calculate the measure of angle A?

A) $\quad \sin \mathrm{A}=\frac{3.75}{6}$
B) $\quad \cos \mathrm{A}=\frac{6}{5}$
C) $\quad \tan \mathrm{A}=\frac{3.75}{6}$
D) $\quad \tan \mathrm{A}=\frac{5}{6}$

In the figure below, a person situated at point A sees
the top of a building at an angle of elevation of 25°.

Height BC of the building is known.
What expression can be used to calculate the distance AB
 between the person and the building?
A) $m \overline{\mathrm{BC}} \times \tan 25^{\circ}$
B) $\mathrm{m} \overline{\mathrm{BC}} \times \cos 25^{\circ}$
C) $\frac{\mathrm{m} \overline{\mathrm{BC}}}{\tan 25^{\circ}}$
D) $\frac{\mathrm{m} \overline{\mathrm{BC}}}{\sin 25^{\circ}}$

If you are positioned 42 m from the foot of a building, the angle of elevation of the top of the building is 30°.

Which equation can be used to calculate the height h of this building?

A) $h=42 \sin 30^{\circ}$
B) $\quad h=\frac{42}{\sin 30^{\circ}}$
C) $\quad h=42 \tan 30^{\circ}$
D) $\quad h=\frac{42}{\tan 30^{\circ}}$

In the triangle ACD shown below, angle D measures 90°. Segment BD is an altitude.

Which of the following statements is TRUE?

A) $\quad \cos \mathrm{C}=\frac{\mathrm{m} \overline{\mathrm{BC}}}{\mathrm{m} \overline{\mathrm{BD}}}$
B) $\quad \tan \mathrm{A}=\frac{\mathrm{m} \overline{\mathrm{BD}}}{\mathrm{m} \overline{\mathrm{AD}}}$
C) $\quad \tan \mathrm{C}=\frac{\mathrm{m} \overline{\mathrm{BD}}}{\mathrm{m} \overline{\mathrm{BC}}}$
D) $\quad \sin \mathrm{A}=\frac{\mathrm{m} \overline{\mathrm{AD}}}{\mathrm{m} \overline{\mathrm{AC}}}$

The base of the arm of a crane is 8 metres above the ground. The arm is 10 metres long. Refer to the diagram at right.

If the angle of elevation of the arm is 39°, which of the following formulas can be used to calculate the height h of the tower?
A) $\quad h=10 \sin 39^{\circ}+8$
C) $h=10 \cos$
$39^{\circ}+8$

B) $\quad h=\frac{10}{\sin 39^{\circ}}+8$
D) $\quad h=\frac{10}{\cos 39^{\circ}}+8$
A) $\frac{10}{19}$
B) $\frac{19 \sin 69^{\circ}}{10}$
C) $\frac{10 \sin 21^{\circ}}{19}$
D) $\frac{10 \sin 69^{\circ}}{19}$

Upon leaving her house, Stephanie travelled 18.0 km to the record store. On the way back, she stopped at the day-care centre to pick up her brother. Her route is represented by the following figure:

Which of the following expressions can be used to calculate the distance between the day-care centre and the record store?
A) $\frac{12.4 \sin 20^{\circ}}{\sin 34^{\circ}}$
B) $\frac{12.4 \sin 34^{\circ}}{\sin 20^{\circ}}$
C) $\frac{18.0 \sin 20^{\circ}}{\sin 34^{\circ}}$
D) $\frac{18.0 \sin 34^{\circ}}{\sin 126^{\circ}}$

Given triangle ABC in which angle B measures 15°, angle C measures 45° and side BC measures 6 m .

What is the measure of side AB in metres?
A) 18
B) $2 \sqrt{6}$
C) $3 \sqrt{2}$
D) $6 \sqrt{2}$

Segment BD is the height of triangle ABC below.

Which expression can be used to calculate the measure of segment AC?

A) $\quad a \sin 52^{\circ}+c \sin 27^{\circ}$
B) $\frac{\cos 52^{\circ}}{a}+\frac{\cos 27^{\circ}}{c}$
C) $\frac{\sin 52^{\circ}}{a}+\frac{\sin 27^{\circ}}{c}$
D) $a \cos 52^{\circ}+c \cos 27^{\circ}$

John lives in Town A and Eric lives in Town B, 4 km away. They both see the same airplane in the sky overhead between the two towns. John sees the airplane at an angle of elevation of 28°. At the same time, Eric sees the airplane at an angle of elevation of 40°.

Which of the following expressions could be used to find the altitude of the airplane, in kilometres?
A) $\frac{4 \sin 28^{\circ} \sin 40^{\circ}}{\sin 112^{\circ}}$
B) $\frac{4\left(\sin 28^{\circ}+\sin 40^{\circ}\right)}{\sin 112^{\circ}}$
C) $\frac{4 \sin 112^{\circ}}{\sin 28^{\circ} \sin 40^{\circ}}$
D) $\frac{4 \sin 112^{\circ}}{\sin 28^{\circ}+\sin 40^{\circ}}$

Peter and Marlene are situated at points P and M respectively to watch a parachutist who is 300 m above the ground. Peter observes the parachutist at an angle of elevation of 26° and Marlene observes the parachutist at an angle of elevation of 32°.

What expression can be used to solve for the distance d between Peter and Marlene?

