Worksheet on Lines

		Name:
Identi	ify the Independent and Dependent	t Variables in each Scenario.
1.	James wants to determine the effect of	fertilizer on the growth of grass.
	Independent: D	ependent:
2.	Alexa want to determine if salinity has a	an effect on his goldfish.
	Independent: D	ependent:
3.	Max want to know the effect of studying	an extra 10 minutes each day on his Math grade.
	Independent: D	ependent:
4.	Shelly wants to determine the effect of	pesticides on the size of the apples in the orchard.
	Independent: D	ependent:
5.	Billy wants to know if increasing his exe	ercise will decrease the time it takes him to run a
	kilometer.	
	Independent: D	ependent:
6.	Lucas wants to know if the quantity of d	letergent has an effect on the cleanliness of his
	clothes.	
	Independent: D	ependent:
7.	Nathan wants to know if the cost of his	cupcakes has an effect on the rate at which he sells
	them.	
	Independent: D	ependent:
8.	The relationship between the number o	f students and the amount of pizza that will be
	required to feed them.	
	Independent: D	ependent:

Part II

Word problems with lines:

- 1) A baseball card is worth 2\$ today. Each year it will increase in value by 3\$.
- a) Independent: _____ Dependent: _____
- b) Table:

x (independent)	0	1	2	3	4	
y (dependent)						

c) Rule:

y = (rate)(x) + (initial value)

 $rate = \frac{change in y}{change in x}$ =rate =

initial value = *the y value when x is zero*

initial value =

Rule : _____

Using the rule:

d) How much will it be worth in 25 years?

e) When will it be worth \$329?

f) Graph :

- 2) Emily is tracking the progress of her plant's growth. Today the plant is 5 cm high. The plant grows 0.5 cm per day.
- a) Independent: _____ Dependent: _____
- b) Table:

x (independent)	0	1	2	3	4	
y (dependent)						

y = (rate)(x) + (initial value)

 $rate = \frac{change in y}{change in x}$ ==rate =

initial value = *the y value when x is zero*

initial value =

Rule : _____

Using the rule:

d) How tall will it be in 15 days?

e) When will it be 37 cm tall?

f) Graph :

- 3) Mr. Clause is on a diet. He currently weighs 240 pounds. He loses 2 pounds per week.
- a) Independent: _____ Dependent: _____

b) Table:

x (independent)	0	5	10	15	20	
y (dependent)						

c) Rule:

y = (rate)(x) + (initial value)

 $rate = \frac{change in y}{change in x}$ = = rate =

initial value = *the y value when x is zero*

initial value =

Rule : _____

Using the rule:

d) How much will he weigh in 10 weeks?

e) When will he weigh 100 lbs(assuming he continues to lose weight at this rate)?

f) Graph :

- 4) The population of St Thomas High School today is 700 students. Every year the population increases by 15 people.
- a) Independent: _____ Dependent: _____
- b) Table:

x (independent)	0	2	4	6	8
y (dependent)					

y = (rate)(x) + (initial value)

 $rate = \frac{change in y}{change in x}$ ==rate =

initial value = *the y value when x is zero*

initial value =

Rule : _____

Using the rule:

d) What will the population of St Thomas be in 20 years?

e) When will there be more than 1000 students?

- 5) Ryan opens a savings account with \$15. He saves \$10 per month. Assume that he does not withdraw money or make any additional deposits.
- a) Independent: _____ Dependent: _____
- b) Table:

x (independent)	0	2	4	6	8
y (dependent)					

y = (rate)(x) + (initial value)

 $rate = \frac{change in y}{change in x}$ ==rate =

initial value = *the y value when x is zero*

initial value =

Rule : _____

Using the rule:

d) How much money will he have in his account after 7 months?

e) He wants to buy a nintendo switch for \$300. When will he have enough money?

- 6) Emma has a monthly cell phone plan that costs \$30 for unlimited calling plus \$0.15 per sent text message.
- a) Independent: _____ Dependent: _____
- b) Table:

x (independent)	0	10	20	30	40
y (dependent)					

y = (rate)(x) + (initial value)

 $rate = \frac{change in y}{change in x}$ ==rate =

initial value = *the y value when x is zero*

initial value =

Rule : _____

Using the rule:

d) How much will her monthly bill be if she sends 20 text messages?

e) If her bill is \$46.50, how many text messages did she send?